Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.948
Filtrar
1.
Sci Rep ; 14(1): 8978, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637685

RESUMO

tRNA modifications play a crucial role in ensuring accurate codon recognition and optimizing translation levels. While the significance of these modifications in eukaryotic cells for maintaining cellular homeostasis and physiological functions is well-established, their physiological roles in bacterial cells, particularly in pathogenesis, remain relatively unexplored. The TusDCB protein complex, conserved in γ-proteobacteria like Escherichia coli, is involved in sulfur modification of specific tRNAs. This study focused on the role of TusDCB in the virulence of uropathogenic E. coli (UPEC), a bacterium causing urinary tract infections. The findings indicate that TusDCB is essential for optimal production of UPEC's virulence factors, including type 1 fimbriae and flagellum, impacting the bacterium's ability to aggregate in bladder epithelial cells. Deletion of tusDCB resulted in decreased virulence against urinary tract infection mice. Moreover, mutant TusDCB lacking sulfur transfer activity and tusE- and mnmA mutants revealed the indispensability of TusDCB's sulfur transfer activity for UPEC pathogenicity. The study extends its relevance to highly pathogenic, multidrug-resistant strains, where tusDCB deletion reduced virulence-associated bacterial aggregation. These insights not only deepen our understanding of the interplay between tRNA sulfur modification and bacterial pathogenesis but also highlight TusDCB as a potential therapeutic target against UPEC strains resistant to conventional antimicrobial agents.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Animais , Camundongos , Virulência/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Infecções Urinárias/microbiologia , Fatores de Virulência/genética , Transferases/metabolismo
2.
Plant Physiol Biochem ; 208: 108506, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38461753

RESUMO

Acetolactate synthase inhibitors (ALS inhibitors) and glyphosate are two classes of herbicides that act by inhibiting an enzyme in the biosynthetic pathway of branched-chain or aromatic amino acids, respectively. Besides amino acid synthesis inhibition, both herbicides trigger similar physiological effects in plants. The main aim of this study was to evaluate the role of glutathione metabolism, with special emphasis on glutathione S-transferases (GSTs), in the mode of action of glyphosate and ALS inhibitors in Amaranthus palmeri. For that purpose, plants belonging to a glyphosate-sensitive (GLS) and a glyphosate-resistant (GLR) population were treated with different doses of glyphosate, and plants belonging to an ALS-inhibitor sensitive (AIS) and an ALS-inhibitor resistant (AIR) population were treated with different doses of the ALS inhibitor nicosulfuron. Glutathione-related contents, GST activity, and related gene expressions (glutamate-cysteine ligase, glutathione reductase, Phi GST and Tau GST) were analysed in leaves. According to the results of the analytical determinations, there were virtually no basal differences between GLS and GLR plants or between AIS and AIR plants. Glutathione synthesis and turnover did not follow a clear pattern in response to herbicides, but GST activity and gene expression (especially Phi GSTs) increased with both herbicides in treated sensitive plants, possibly related to the rocketing H2O2 accumulation. As GSTs offered the clearest results, these were further investigated with a multiple resistant (MR) population, compressing target-site resistance to both glyphosate and the ALS inhibitor pyrithiobac. As in single-resistant plants, measured parameters in the MR population were unaffected by herbicides, meaning that the increase in GST activity and expression occurs due to herbicide interactions with the target enzymes.


Assuntos
Amaranthus , Herbicidas , Herbicidas/farmacologia , Herbicidas/metabolismo , Peróxido de Hidrogênio/metabolismo , Resistência a Herbicidas , 60658 , Glutationa/metabolismo , Transferases/metabolismo
3.
Redox Biol ; 71: 103094, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479221

RESUMO

Low-molecular-weight (LMW) thiols are produced in all living cells in different forms and concentrations. Glutathione (GSH), coenzyme A (CoA), bacillithiol (BSH), mycothiol (MSH), ergothioneine (ET) and trypanothione T(SH)2 are the main LMW thiols in eukaryotes and prokaryotes. LMW thiols serve as electron donors for thiol-dependent enzymes in redox-mediated metabolic and signaling processes, protect cellular macromolecules from oxidative and xenobiotic stress, and participate in the reduction of oxidative modifications. The level and function of LMW thiols, their oxidized disulfides and mixed disulfide conjugates in cells and tissues is tightly controlled by dedicated oxidoreductases, such as peroxiredoxins, glutaredoxins, disulfide reductases and LMW thiol transferases. This review provides the first summary of the current knowledge of structural and functional diversity of transferases for LMW thiols, including GSH, BSH, MSH and T(SH)2. Their role in maintaining redox homeostasis in single-cell and multicellular organisms is discussed, focusing in particular on the conjugation of specific thiols to exogenous and endogenous electrophiles, or oxidized protein substrates. Advances in the development of new research tools, analytical methodologies, and genetic models for the analysis of known LMW thiol transferases will expand our knowledge and understanding of their function in cell growth and survival under oxidative stress, nutrient deprivation, and during the detoxification of xenobiotics and harmful metabolites. The antioxidant function of CoA has been recently discovered and the breakthrough in defining the identity and functional characteristics of CoA S-transferase(s) is soon expected.


Assuntos
Antioxidantes , Compostos de Sulfidrila , Compostos de Sulfidrila/metabolismo , Antioxidantes/metabolismo , Transferases/metabolismo , Oxirredução , Glutationa/metabolismo , Oxirredutases/metabolismo , Dissulfetos/química
4.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473957

RESUMO

Chlorogenic acids (CGAs) are bioactive compounds widely used in the food, pharmaceutical, and cosmetic industries. Carthamus tinctorius is an important economic crop, and its suspension cells are rich in CGAs. However, little is known about the biosynthesis and regulation of CGAs in Carthamus tinctorius cells. This study first elucidated the regulatory mechanism of CGA biosynthesis in methyl jasmonate (MeJA)-treated Carthamus tinctorius cells and the role of the MeJA-responsive hydroxycinnamoyl transferase (HCT) gene in enhancing their CGA accumulation. Firstly, temporal changes in intracellular metabolites showed that MeJA increased the intracellular CGA content up to 1.61-fold to 100.23 mg·g-1. Meanwhile, 31 primary metabolites showed significant differences, with 6 precursors related to increasing CGA biosynthesis. Secondly, the transcriptome data revealed 3637 new genes previously unannotated in the Carthamus tinctorius genome and 3653 differentially expressed genes. The genes involved in the plant signaling pathway and the biosynthesis of CGAs and their precursors showed a general up-regulation, especially the HCT gene family, which ultimately promoted CGA biosynthesis. Thirdly, the expression of a newly annotated and MeJA-responsive HCT gene (CtHCT, CtNewGene_3476) was demonstrated to be positively correlated with CGA accumulation in the cells, and transient overexpression of CtHCT enhanced CGA accumulation in tobacco. Finally, in vitro catalysis kinetics and molecular docking simulations revealed the ability and mechanism of the CtHCT protein to bind to various substrates and catalyze the formation of four hydroxycinnamic esters, including CGAs. These findings strengthened our understanding of the regulatory mechanism of CGA biosynthesis, thereby providing theoretical support for the efficient production of CGAs.


Assuntos
Acetatos , Carthamus tinctorius , Ciclopentanos , Oxilipinas , Transferases , Transferases/metabolismo , Ácido Clorogênico/metabolismo , Carthamus tinctorius/genética , Simulação de Acoplamento Molecular , Transcriptoma , Nucleotidiltransferases/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Antonie Van Leeuwenhoek ; 117(1): 47, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427176

RESUMO

Desulfofundulus kuznetsovii is a thermophilic, spore-forming sulphate-reducing bacterium in the family Peptococcaceae. In this study, we describe a newly isolated strain of D. kuznetsovii, strain TPOSR, and compare its metabolism to the type strain D. kuznetsovii 17T. Both strains grow on a large variety of alcohols, such as methanol, ethanol and propane-diols, coupled to the reduction of sulphate. Strain 17T metabolizes methanol via two routes, one involving a cobalt-dependent methyl transferase and the other using a cobalt-independent alcohol dehydrogenase. However, strain TPOSR, which shares 97% average nucleotide identity with D. kuznetsovii strain 17T, lacks several genes from the methyl transferase operon found in strain 17T. The gene encoding the catalytically active methyl transferase subunit B is missing, indicating that strain TPOSR utilizes the alcohol dehydrogenase pathway exclusively. Both strains grew with methanol during cobalt starvation, but growth was impaired. Strain 17T was more sensitive to cobalt deficiency, due to the repression of its methyl transferase system. Our findings shed light on the metabolic diversity of D. kuznetsovii and their metabolic differences of encoding one or two routes for the conversion of methanol.


Assuntos
Álcool Desidrogenase , Metanol , Peptococcaceae , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Metanol/metabolismo , Oxirredução , Transferases/metabolismo , Sulfatos/metabolismo , Cobalto , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo
6.
Water Res ; 252: 121226, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309071

RESUMO

The extensive exploration of antibiotic biodegradation by antibiotic-degrading bacteria in biological wastewater treatment processes has left a notable gap in understanding the behavior of these bacteria when exposed to antibiotics and the initiation of biodegradation processes. This study, therefore, delves into the adhesive behavior of Paraclostridium bifermentans, isolated from a bioreactor treating ciprofloxacin-laden wastewater, towards ciprofloxacin molecules. For the first time, this behavior is observed and characterized through quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy. The investigation further extends to identify key regulatory factors and mechanisms governing this adhesive behavior through a comparative proteomics analysis. The results reveal the dominance of extracellular proteins, particularly those involved in nucleotide binding, hydrolase, and transferase, in the adhesion process. These proteins play pivotal roles through direct chemical binding and the regulation of signaling molecule. Furthermore, QCM-D measurements provide evidence that transferase-related signaling molecules, especially tyrosine, augment the binding between ciprofloxacin and transferases, resulting in enhance ciprofloxacin removal by P. bifermentans (increased by ∼1.2-fold). This suggests a role for transferase-related signaling molecules in manipulating the adhesive behavior of P. bifermentans towards ciprofloxacin. These findings contribute to a new understanding of the prerequisites for antibiotic biodegradation and offer potential strategies for improving the application of antibiotic-degrading bacteria in the treatment of antibiotics-laden wastewater.


Assuntos
Antibacterianos , Ciprofloxacina , Antibacterianos/metabolismo , Ciprofloxacina/metabolismo , Águas Residuárias , Biodegradação Ambiental , Bactérias/metabolismo , Proteínas , Transferases/metabolismo
7.
Biochemistry ; 63(5): 671-687, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38393327

RESUMO

The bacterial metabolic enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXPS) catalyzes the thiamin diphosphate (ThDP)-dependent formation of DXP from pyruvate and d-glyceraldehyde-3-phosphate (d-GAP). DXP is an essential bacteria-specific metabolite that feeds into the biosynthesis of isoprenoids, pyridoxal phosphate (PLP), and ThDP. DXPS catalyzes the activation of pyruvate to give the C2α-lactylThDP (LThDP) adduct that is long-lived on DXPS in a closed state in the absence of the cosubstrate. Binding of d-GAP shifts the DXPS-LThDP complex to an open state which coincides with LThDP decarboxylation. This gated mechanism distinguishes DXPS in ThDP enzymology. How LThDP persists on DXPS in the absence of cosubstrate, while other pyruvate decarboxylases readily activate LThDP for decarboxylation, is a long-standing question in the field. We propose that an active site network functions to prevent LThDP activation on DXPS until the cosubstrate binds. Binding of d-GAP coincides with a conformational shift and disrupts the network causing changes in the active site that promote LThDP activation. Here, we show that the substitution of putative network residues, as well as nearby residues believed to contribute to network charge distribution, predictably affects LThDP reactivity. Substitutions predicted to disrupt the network have the effect to activate LThDP for decarboxylation, resulting in CO2 and acetate production. In contrast, a substitution predicted to strengthen the network fails to activate LThDP and has the effect to shift DXPS toward the closed state. Network-disrupting substitutions near the carboxylate of LThDP also have a pronounced effect to shift DXPS to an open state. These results offer initial insights to explain the long-lived LThDP intermediate and its activation through disruption of an active site network, which is unique to DXPS. These findings have important implications for DXPS function in bacteria and its development as an antibacterial target.


Assuntos
Difosfatos , Tiamina Pirofosfato , Domínio Catalítico , Tiamina Pirofosfato/metabolismo , Transferases/metabolismo , Ácido Pirúvico , Bactérias/metabolismo , Óxido Nítrico Sintase/metabolismo , Antibacterianos
8.
J Biol Chem ; 300(3): 105768, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367664

RESUMO

Galactan polymer is a prominent component of the mycobacterial cell wall core. Its biogenesis starts at the cytoplasmic side of the plasma membrane by a build-up of the linker disaccharide [rhamnosyl (Rha) - N-acetyl-glucosaminyl (GlcNAc) phosphate] on the decaprenyl-phosphate carrier. This decaprenyl-P-P-GlcNAc-Rha intermediate is extended by two bifunctional galactosyl transferases, GlfT1 and GlfT2, and then it is translocated to the periplasmic space by an ABC transporter Wzm-Wzt. The cell wall core synthesis is finalized by the action of an array of arabinosyl transferases, mycolyl transferases, and ligases that catalyze an attachment of the arabinogalactan polymer to peptidoglycan through the linker region. Based on visualization of the GlfT2 enzyme fused with fluorescent tags it was proposed that galactan polymerization takes place in a specific compartment of the mycobacterial cell envelope, the intracellular membrane domain, representing pure plasma membrane free of cell wall components (previously denoted as the "PMf" domain), which localizes to the polar region of mycobacteria. In this work, we examined the activity of the galactan-producing cellular machine in the cell-wall containing cell envelope fraction and in the cell wall-free plasma membrane fraction prepared from Mycobacterium smegmatis by the enzyme assays using radioactively labeled substrate UDP-[14C]-galactose as a tracer. We found that despite a high abundance of GlfT2 in both of these fractions as confirmed by their thorough proteomic analyses, galactan is produced only in the reaction mixtures containing the cell wall components. Our findings open the discussion about the distribution of GlfT2 and the regulation of its activity in mycobacteria.


Assuntos
Galactanos , Mycobacterium , Galactanos/biossíntese , Polímeros/metabolismo , Proteômica , Transferases/metabolismo , Mycobacterium/metabolismo
9.
Proc Natl Acad Sci U S A ; 121(7): e2322375121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38315835

RESUMO

Protein S-acyl transferases (PATs) catalyze S-acylation, a reversible post-translational modification critical for membrane association, trafficking, and stability of substrate proteins. Many plant proteins are potentially S-acylated but few have corresponding PATs identified. By using genomic editing, confocal imaging, pharmacological, genetic, and biochemical assays, we demonstrate that three Arabidopsis class C PATs positively regulate BR signaling through S-acylation of BRASSINOSTEROID-SIGNALING KINASE1 (BSK1). PAT19, PAT20, and PAT22 associate with the plasma membrane (PM) and the trans-Golgi network/early endosome (TGN/EE). Functional loss of all three genes results in a plethora of defects, indicative of reduced BR signaling and rescued by enhanced BR signaling. PAT19, PAT20, and PAT22 interact with BSK1 and are critical for the S-acylation of BSK1, and for BR signaling. The PM abundance of BSK1 was reduced by functional loss of PAT19, PAT20, and PAT22 whereas abolished by its S-acylation-deficient point mutations, suggesting a key role of S-acylation in its PM targeting. Finally, an active BR analog induces vacuolar trafficking and degradation of PAT19, PAT20, or PAT22, suggesting that the S-acylation of BSK1 by the three PATs serves as a negative feedback module in BR signaling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Serina-Treonina Quinases , Acilação , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Regulação da Expressão Gênica de Plantas , Transdução de Sinais , Transferases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
10.
Biochemistry ; 63(5): 651-659, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38388156

RESUMO

AMPylation is a post-translational modification utilized by human and bacterial cells to modulate the activity and function of specific proteins. Major AMPylators such as human FICD and bacterial VopS have been studied extensively for their substrate and target scope in vitro. Recently, an AMP pronucleotide probe also facilitated the in situ analysis of AMPylation in living cells. Based on this technology, we here introduce a novel UMP pronucleotide probe and utilize it to profile uninfected and Vibrio parahaemolyticus infected human cells. Mass spectrometric analysis of labeled protein targets reveals an unexpected promiscuity of human nucleotide transferases with an almost identical target set of AMP- and UMPylated proteins. Vice versa, studies in cells infected by V. parahaemolyticus and its effector VopS revealed solely AMPylation of host enzymes, highlighting a so far unknown specificity of this transferase for ATP. Taken together, pronucleotide probes provide an unprecedented insight into the in situ activity profile of crucial nucleotide transferases, which can largely differ from their in vitro activity.


Assuntos
Nucleotídeos , Transferases , Humanos , Nucleotídeos/metabolismo , Transferases/metabolismo , Proteínas de Bactérias/química , Monofosfato de Adenosina/metabolismo , Processamento de Proteína Pós-Traducional
11.
Bone ; 181: 117043, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38341164

RESUMO

Bone formation and homeostasis are controlled by environmental factors and endocrine regulatory cues that initiate intracellular signaling pathways capable of modulating gene expression in the nucleus. Bone-related gene expression is controlled by nucleosome-based chromatin architecture that limits the accessibility of lineage-specific gene regulatory DNA sequences and sequence-specific transcription factors. From a developmental perspective, bone-specific gene expression must be suppressed during the early stages of embryogenesis to prevent the premature mineralization of skeletal elements during fetal growth in utero. Hence, bone formation is initially inhibited by gene suppressive epigenetic regulators, while other epigenetic regulators actively support osteoblast differentiation. Prominent epigenetic regulators that stimulate or attenuate osteogenesis include lysine methyl transferases (e.g., EZH2, SMYD2, SUV420H2), lysine deacetylases (e.g., HDAC1, HDAC3, HDAC4, HDAC7, SIRT1, SIRT3), arginine methyl transferases (e.g., PRMT1, PRMT4/CARM1, PRMT5), dioxygenases (e.g., TET2), bromodomain proteins (e.g., BRD2, BRD4) and chromodomain proteins (e.g., CBX1, CBX2, CBX5). This narrative review provides a broad overview of the covalent modifications of DNA and histone proteins that involve hundreds of enzymes that add, read, or delete these epigenetic modifications that are relevant for self-renewal and differentiation of mesenchymal stem cells, skeletal stem cells and osteoblasts during osteogenesis.


Assuntos
Osteogênese , Fatores de Transcrição , Osteogênese/genética , Fatores de Transcrição/metabolismo , Lisina/metabolismo , Proteínas Nucleares/genética , Diferenciação Celular/genética , Epigênese Genética , Osteoblastos/metabolismo , Transferases/genética , Transferases/metabolismo
12.
Ecotoxicol Environ Saf ; 271: 115954, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38232523

RESUMO

BACKGROUND: Nickel is a confirmed human lung carcinogen. Nonetheless, the molecular mechanisms driving its carcinogenic impact on lung tissue remain poorly defined. In this study, we assessed SESN2 expression and the signaling pathways responsible for cellular transformation in human bronchial epithelial cells (HBECs) as a result of nickel exposure. METHODS: We employed the Western blotting to determine the induction of SESN2 by nickel. To clarify the signaling pathways leading to cellular transformation following nickel exposure, we applied techniques such as gene knockdown, methylation-specific PCR, and chromatin immunoprecipitation. RESULT: Exposure to nickel results in the upregulation of SESN2 and the initiation of autophagy in human bronchial epithelial cells (HBECs). This leads to degradation of HUR protein and consequently downregulation of USP28 mRNA, PP2AC protein, ß-catenin protein, and diminished VHL transcription, culminating in the accumulation of hypoxia-inducible factor-1α (HIF-1α) and the malignant transformation of these cells. Mechanistic studies revealed that the increased expression of SESN2 is attributed to the demethylation of the SESN2 promoter induced by nickel, a process facilitated by decreased DNA methyl-transferase 3 A (DNMT3a) expression, while The downregulation of VHL transcription is linked to the suppression of the PP2A-C/GSK3ß/ß-Catenin/C-Myc pathway. Additionally, we discovered that SESN2-mediated autophagy triggers the degradation of HUR protein, which subsequently reduces the stability of USP28 mRNA and inhibits the PP2A-C/GSK3ß/ß-Catenin pathway and c-Myc transcription in HBECs post nickel exposure. CONCLUSION: Our results reveal that nickel exposure leads to the downregulation of DNMT3a, resulting in the hypomethylation of the SESN2 promoter and its protein induction. This triggers autophagy-dependent suppression of the HUR/USP28/PP2A/ß-Catenin/c-Myc pathway, subsequently leading to reduced VHL transcription, accumulation of HIF-1α protein, and the malignant transformation of human bronchial epithelial cells (HBECs). Our research offers novel insights into the molecular mechanisms that underlie the lung carcinogenic effects of nickel exposure. Specifically, nickel induces aberrant DNA methylation in the SESN2 promoter region through the decrease of DNMT3a levels, which ultimately leads to HIF-1α protein accumulation and the malignant transformation of HBECs. Specifically, nickel initiates DNA-methylation of the SESN2 promoter region by decreasing DNMT3a, ultimately resulting in HIF-1α protein accumulation and malignant transformation of HBECs. This study highlights DNMT3a as a potential prognostic biomarker or therapeutic target to improve clinical outcomes in lung cancer patients.


Assuntos
Níquel , beta Catenina , Humanos , Níquel/toxicidade , Níquel/metabolismo , beta Catenina/metabolismo , Sestrinas/metabolismo , Regulação para Cima , Transferases/metabolismo , Proteína Semelhante a ELAV 1/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Células Epiteliais/metabolismo , Transformação Celular Neoplásica/genética , DNA/metabolismo , RNA Mensageiro/metabolismo , Ubiquitina Tiolesterase/metabolismo
13.
Chembiochem ; 25(7): e202300796, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38225831

RESUMO

Neryl diphosphate (C10) synthase (NDPS1), a homodimeric soluble cis-prenyltransferase from tomato, contains four disulfide bonds, including two inter-subunit S-S bonds in the N-terminal region. Mutagenesis studies demonstrated that the S-S bond formation affects not only the stability of the dimer but also the catalytic efficiency of NDPS1. Structural polymorphs in the crystal structures of NDPS1 complexed with its substrate and substrate analog were identified by employing massive data collections and hierarchical clustering analysis. Heterogeneity of the C-terminal region, including the conserved RXG motifs, was observed in addition to the polymorphs of the binding mode of the ligands. One of the RXG motifs covers the active site with an elongated random coil when the ligands are well-ordered. Conversely, the other RXG motif was located away from the active site with a helical structure. The heterogeneous C-terminal regions suggest alternating structural transitions of the RXG motifs that result in closed and open states of the active sites. Site-directed mutagenesis studies demonstrated that the conserved glycine residue cannot be replaced. We propose that the putative structural transitions of the order/disorder of N-terminal regions and the closed/open states of C-terminal regions may cooperate and be important for the catalytic mechanism of NDPS1.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Transferases/metabolismo , Domínios Proteicos , Mutagênese Sítio-Dirigida
14.
Plant Physiol Biochem ; 207: 108327, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38271860

RESUMO

Triclosan has been extensively used as a preservative in cosmetics and personal care products. However, its accumulation represents a real environmental threat. Thus, its phytotoxic impact needs more consideration. Our study was conducted to highlight the phytotoxic effect of triclosan on the growth, ROS homeostasis, and detoxification metabolism of two different plant species i.e., legumes (Glycine max) and grass (Avena sativa). Moreover, we investigated the potentiality of plant growth-promoting bacteria (ST-PGPB) in mitigating the phytotoxic effect of triclosan. Triclosan induced biomass (fresh and dry weights) reduction in both plants, but to a higher extent in oats. This decline was associated with a noticeable increment in the oxidative damage (e.g., MDA and H2O2) and detoxification metabolites such as metallothionein (MTC), phytochelatins (PCs), and glutathione-S-transferase (GST). This elevation was associated with a remarkable reduction in both enzymatic and non-enzymatic antioxidants. On the other hand, the bioactive strain of ST-PGPB, Salinicoccus sp. JzA1 significantly alleviated the harmful effect of triclosan on both soybean and oat plants by enhancing their biomass, photosynthesis, as well as levels of minerals (K, Ca, P, Mn, and Zn). In parallel, a striking quenching in oxidative damage and an obvious improvement in non-enzymatic (polyphenols, tocopherols, flavonoids) and enzymatic antioxidants were observed. Furthermore, Salinicoccus sp. JzA1 augmented the detoxification metabolism by enhancing the levels of phytochelatins, metallothionein, and glutathione-S-transferase (GST) activity in a species-specific manner which is more apparent in soybean rather than in oat plants. To this end, stress mitigating impact of Salinicoccus sp. JzA1 provides a basis to improve the resilience of crop species under cosmetics and personal care products toxicity.


Assuntos
Cosméticos , Triclosan , Avena/metabolismo , Triclosan/metabolismo , Triclosan/toxicidade , Soja , Espécies Reativas de Oxigênio/metabolismo , Fitoquelatinas/metabolismo , Peróxido de Hidrogênio/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo , Plantas/metabolismo , Homeostase , Cosméticos/metabolismo , Cosméticos/farmacologia , Metalotioneína/metabolismo , Transferases/metabolismo
15.
J Biomol Struct Dyn ; 42(4): 1711-1724, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37325855

RESUMO

Zika virus (ZIKV) spread is considered a major public health threat by the World Health Organization (WHO). There are no vaccines or drugs available to control the infection of the Zika virus, therefore a highly effective medicinal molecule is urgently required. In this study, a computationally intensive investigation was performed to identify a potent natural compound that could inhibit the ZIKV NS5 methyltransferase. This research approach is based on target-based drug identification principles where the native inhibitor SAH (S-adenosylhomocysteine) of ZIKV NS5 methyltransferase was selected as a reference. High-throughput virtual screening and tanimoto similarity coefficient were applied to the natural compound library for ranking the potential candidates. The top five compounds were selected for interaction analysis, MD simulation, total binding free energy through MM/GBSA, and steered MD simulation. Among these compounds, Adenosine 5'-monophosphate monohydrate, Tubercidin, and 5-Iodotubercidin showed stable binding to the protein compared to the native compound, SAH. These three compounds also showed less fluctuations in RMSF in contrast to native compound. Additionally, the same interacting residues observed in SAH also made strong interactions with these three compounds. Adenosine 5'-monophosphate monohydrate and 5-Iodotubercidin had greater total binding free energies than the reference ligand. Moreover, the dissociation resistance of all three compounds was equivalent to that of the reference ligand. This study suggested binding properties of three-hit compounds that could be used to develop drugs against Zika virus infections.Communicated by Ramaswamy H. Sarma.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Simulação de Dinâmica Molecular , Ligantes , Proteínas não Estruturais Virais/química , Adenosina , Metiltransferases/química , Transferases/metabolismo , Transferases/farmacologia , Simulação de Acoplamento Molecular , Antivirais/farmacologia , Antivirais/química
16.
Vet Microbiol ; 288: 109932, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043447

RESUMO

Bovine herpesvirus 1(BoHV-1) is an important bovine pathogen that causes great economic loss to cattle farms worldwide. The virus-productive infection in bovine kidney (MDBK) cells results in ATP depletion. The mechanisms are not well understood. Mitochondrial fatty acid ß-oxidation (FAO) is an important energy source in many tissues with high energy demand. Since carnitine palmitoyl-transferase 1 A (CPT1A) is the rate-limiting enzyme of FAO, we investigated the interactions between virus-productive infection and CPT1A signaling. Here, we found that virus-productive infection at the later stage significantly decreased CPT1A protein levels in all the detected cells, including MDBK, A549, and Neuro-2A cells, differentially altered the accumulation of CPT1A proteins in the nucleus and cytosol, and re-localized the protein in the nucleus. Etomoxir (ETO), an irreversible inhibitor of CPT1A, inhibited viral replication and partially interfered with the ability of BoHV-1 to alter CPT1A accumulation in the nucleus but not in the cytosol. Furthermore, ETO consistently reduced RNA levels of two viral regulatory proteins (bICP0 and bICP22) and protein expression of virion-associated proteins during productive infection, further supporting the important roles of CPT1A signaling in BoHV-1 productive infection. These data, for the first time, suggest that CPT1A is potentially involved in BoHV-1 productive infection.


Assuntos
Doenças dos Bovinos , Infecções por Herpesviridae , Herpesvirus Bovino 1 , Bovinos , Animais , Herpesvirus Bovino 1/genética , Replicação Viral , Infecções por Herpesviridae/veterinária , Transferases/metabolismo , Carnitina/metabolismo
17.
Plant Physiol ; 194(2): 832-848, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37831082

RESUMO

Grasses are abundant feedstocks that can supply lignocellulosic biomass for production of cell-wall-derived chemicals. In grass cell walls, lignin is acylated with p-coumarate. These p-coumarate decorations arise from the incorporation of monolignol p-coumarate conjugates during lignification. A previous biochemical study identified a rice (Oryza sativa) BAHD acyltransferase (AT) with p-coumaroyl-CoA:monolignol transferase (PMT) activity in vitro. In this study, we determined that that enzyme, which we name OsPMT1 (also known as OsAT4), and the closely related OsPMT2 (OsAT3) harbor similar catalytic activity toward monolignols. We generated rice mutants deficient in either or both OsPMT1 and OsPMT2 by CRISPR/Cas9-mediated mutagenesis and subjected the mutants' cell walls to analysis using chemical and nuclear magnetic resonance methods. Our results demonstrated that OsPMT1 and OsPMT2 both function in lignin p-coumaroylation in the major vegetative tissues of rice. Notably, lignin-bound p-coumarate units were undetectable in the ospmt1 ospmt2-2 double-knockout mutant. Further, in-depth structural analysis of purified lignins from the ospmt1 ospmt2-2 mutant compared with control lignins from wild-type rice revealed stark changes in polymer structures, including alterations in syringyl/guaiacyl aromatic unit ratios and inter-monomeric linkage patterns, and increased molecular weights. Our results provide insights into lignin polymerization in grasses that will be useful for the optimization of bioengineering approaches for the effective use of biomass in biorefineries.


Assuntos
Oryza , Transferases , Transferases/análise , Transferases/metabolismo , Oryza/metabolismo , Lignina/metabolismo , Proteínas de Plantas/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Parede Celular/metabolismo
18.
Circ Res ; 134(1): 100-113, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38084599

RESUMO

BACKGROUND: Cardiac hypertrophy is an intermediate stage in the development of heart failure. The structural and functional processes occurring in cardiac hypertrophy include extensive gene reprogramming, which is dependent on epigenetic regulation and chromatin remodeling. However, the chromatin remodelers and their regulatory functions involved in the pathogenesis of cardiac hypertrophy are not well characterized. METHODS: Protein interaction was determined by immunoprecipitation assay in primary cardiomyocytes and mouse cardiac samples subjected or not to transverse aortic constriction for 1 week. Chromatin immunoprecipitation and DNA sequencing (ChIP-seq) experiments were performed on the chromatin of adult mouse cardiomyocytes. RESULTS: We report that the calcium-activated protein phosphatase CaN (calcineurin), its endogenous inhibitory protein carabin, the STK24 (STE20-like protein kinase 3), and the histone monomethyltransferase, MLL3 (mixed lineage leukemia 3) form altogether a macromolecular complex at the chromatin of cardiomyocytes. Under basal conditions, carabin prevents CaN activation while the serine/threonine kinase STK24 maintains MLL3 inactive via phosphorylation. After 1 week of transverse aortic constriction, both carabin and STK24 are released from the CaN-MLL3 complex leading to the activation of CaN, dephosphorylation of MLL3, and in turn, histone H3 lysine 4 monomethylation. Selective cardiac MLL3 knockdown mitigates hypertrophy, and chromatin immunoprecipitation and DNA sequencing analysis demonstrates that MLL3 is de novo recruited at the transcriptional start site of genes implicated in cardiomyopathy in stress conditions. We also show that CaN and MLL3 colocalize at chromatin and that CaN activates MLL3 histone methyl transferase activity at distal intergenic regions under hypertrophic conditions. CONCLUSIONS: Our study reveals an unsuspected epigenetic mechanism of CaN that directly regulates MLL3 histone methyl transferase activity to promote cardiac remodeling.


Assuntos
Calcineurina , Histonas , Animais , Camundongos , Calcineurina/metabolismo , Cardiomegalia/metabolismo , Cromatina/metabolismo , Epigênese Genética , Histonas/metabolismo , Miócitos Cardíacos/metabolismo , Transferases/genética , Transferases/metabolismo , Remodelação Ventricular
19.
Phytochemistry ; 217: 113896, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37866445

RESUMO

Anthocyanins are a flavonoid compound known as one of the most important chromogenic substances. They play several functions, including health promotion and sustaining plants during adverse conditions. They are synthesized at the endoplasmic reticulum and sequestered in the vacuole. In this work, we generated knock-out lines of OsGSTU34, a glutathione transporter's tau gene family, with no transgene line and off-target through CRISPR/Cas9 mutagenesis and highlighted the loss of pigmentation in rice flowers, leaves, stems, shoots, and caryopsis. The anthocyanin quantification in the wild-type BLWT and mutant line BLG34-8 caryopsis showed that cyanidin-3-O-glucoside (C3G) and peonidin-3-O-glucoside (P3G) were almost undetectable in the mutant line. A tandem mass tag (TMT) labeling proteomic analysis was conducted to elucidate the proteomic changes in the BLWT and BLG34-8. The result revealed that 1175 proteins were altered, including 408 that were down-regulated and 767 that were upregulated. The accumulation of the OsGSTU34-related protein (Q8L576), along with several anthocyanin-related proteins, was down-regulated. The enrichment analysis showed that the down-regulated proteins were enriched in different pathways, among which the phenylpropanoid biosynthesis pathway, flavonoid biosynthesis metabolites, and anthocyanin biosynthesis pathway. Protein interaction network prediction revealed that glutathione-S-transferase (Q8L576) was connected to the proteins involved in the flavonoid and anthocyanin biosynthesis pathways, such as flavanone 3-dioxygenase 1 (Q7XM21), leucoanthocyanidin dioxygenase 1 (Q93VC3), 4-coumarate-CoA ligase 2 (Q42982), phenylalanine ammonia-lyase (P14717), chalcone synthase 1 (Q2R3A1), and 4-coumarate-CoA ligase 5 (Q6ZAC1). However, the expression of the most important anthocyanin biosynthesis gene was not altered, suggesting that only the transport mechanism was affected. Our findings highlight new insight into the anthocyanin pigmentation in black rice and provide new perspectives for future research.


Assuntos
Antocianinas , Oryza , Oryza/genética , Oryza/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Transferases/metabolismo , Proteômica , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
20.
Food Chem ; 440: 138250, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38154282

RESUMO

Carbohydrate-active enzymes are accountable for the synthesis and degradation of glycosidic bonds among diverse carbohydrates. Fructosyl-transferases represent a subclass of these enzymes, employing sucrose as a substrate to generate fructooligosaccharides (FOS) and fructan polymers. This category primarily includes levansucrase (LS, EC 2.4.1.10), inulosucrase (IS, EC 2.4.1.9), and ß-fructofuranosidase (Ffase, EC 3.2.1.26). These three enzymes possess a similar five-bladed ß-propeller fold and employ an anomer-retaining reaction mechanism mediated by nucleophiles, transition state stabilizers, and general acids/bases. However, they exhibit distinct product profiles, characterized by variations in linkage specificity and molecular mass distribution. Consequently, this article comprehensively explores recent advancements in the catalytic characteristics, structural features, reaction mechanisms, and product specificity of levansucrase, inulosucrase, and ß-fructofuranosidase (abbreviated as LS, IS, and Ffase, respectively). Furthermore, it discusses the potential for modifying catalytic properties and product specificity through structure-based design, which enables the rational production of custom fructan and FOS.


Assuntos
Hexosiltransferases , Transferases , Transferases/metabolismo , beta-Frutofuranosidase/metabolismo , Hexosiltransferases/metabolismo , Oligossacarídeos/metabolismo , Frutanos/metabolismo , Catálise , Sacarose/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...